skip to main content


Search for: All records

Creators/Authors contains: "Camp, Ariel L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Suction feeding in ray-finned fishes involves powerful buccal cavity expansion to accelerate water and food into the mouth. Previous XROMM studies in largemouth bass (Micropterus salmoides), bluegill sunfish (Lepomis macrochirus) and channel catfish (Ictalurus punctatus) have shown that more than 90% of suction power in high performance strikes comes from the axial musculature. Thus, the shape of the axial muscles and skeleton may affect suction feeding mechanics. Royal knifefish (Chitala blanci) have an unusual postcranial morphology, with a ventrally flexed vertebral column and relatively large mass of epaxial muscle. Based on their body shape, we hypothesized that royal knifefish would generate high power strikes by utilizing large neurocranial elevation, vertebral column extension and epaxial shortening. As predicted, C. blanci generated high suction expansion power compared with the other three species studied to date (up to 160 W), which was achieved by increasing both the rate of volume change and the intraoral subambient pressure. The large epaxial muscle (25% of body mass) shortened at high velocities to produce large neurocranial elevation and vertebral extension (up to 41 deg, combined), as well as high muscle mass-specific power (up to 800 W kg−1). For the highest power strikes, axial muscles generated 95% of the power, and 64% of the axial muscle mass consisted of the epaxial muscles. The epaxial-dominated suction expansion of royal knifefish supports our hypothesis that postcranial morphology may be a strong predictor of suction feeding biomechanics. 
    more » « less
  2. Tetrapods use their neck to move the head three-dimensionally, relative to the body and limbs. Fish lack this anatomical neck, yet during feeding many species elevate (dorsally rotate) the head relative to the body. Cranial elevation is hypothesized to result from the craniovertebral and cranial-most intervertebral joints acting as a neck, by dorsally rotating (extending). However, this has never been tested due to the difficulty of visualizing and measuring vertebral motion in vivo . I used X-ray reconstruction of moving morphology to measure three-dimensional vertebral kinematics in rainbow trout ( Oncorhynchus mykiss ) and Commerson's frogfish ( Antennarius commerson ) during feeding. Despite dramatically different morphologies, in both species dorsoventral rotations extended far beyond the craniovertebral and cranial intervertebral joints. Trout combine small (most less than 3°) dorsal rotations over up to a third of their intervertebral joints to elevate the neurocranium. Frogfish use extremely large (often 20–30°) rotations of the craniovertebral and first intervertebral joint, but smaller rotations occurred across two-thirds of the vertebral column during cranial elevation. Unlike tetrapods, fish rotate large regions of the vertebral column to rotate the head. This suggests both cranial and more caudal vertebrae should be considered to understand how non-tetrapods control motion at the head–body interface. 
    more » « less
  3. ABSTRACT Some fishes rely on large regions of the dorsal (epaxial) and ventral (hypaxial) body muscles to power suction feeding. Epaxial and hypaxial muscles are known to act as motors, powering rapid mouth expansion by shortening to elevate the neurocranium and retract the pectoral girdle, respectively. However, some species, like catfishes, use little cranial elevation. Are these fishes instead using the epaxial muscles to forcefully anchor the head, and if so, are they limited to lower-power strikes? We used X-ray imaging to measure epaxial and hypaxial length dynamics (fluoromicrometry) and associated skeletal motions (XROMM) during 24 suction feeding strikes from three channel catfish ( Ictalurus punctatus ). We also estimated the power required for suction feeding from oral pressure and dynamic endocast volume measurements. Cranial elevation relative to the body was small (<5 deg) and the epaxial muscles did not shorten during peak expansion power. In contrast, the hypaxial muscles consistently shortened by 4–8% to rotate the pectoral girdle 6–11 deg relative to the body. Despite only the hypaxial muscles generating power, catfish strikes were similar in power to those of other species, such as largemouth bass ( Micropterus salmoides ), that use epaxial and hypaxial muscles to power mouth expansion. These results show that the epaxial muscles are not used as motors in catfish, but suggest they position and stabilize the cranium while the hypaxial muscles power mouth expansion ventrally. Thus, axial muscles can serve fundamentally different mechanical roles in generating and controlling cranial motion during suction feeding in fishes. 
    more » « less
  4. Abstract Studies of vertebrate feeding have predominantly focused on the bones and muscles of the head, not the body. Yet, postcranial musculoskeletal structures like the spine and pectoral girdle are anatomically linked to the head, and may also have mechanical connections through which they can contribute to feeding. The feeding roles of postcranial structures have been best studied in ray-finned fishes, where the body muscles, vertebral column, and pectoral girdle attach directly to the head and help expand the mouth during suction feeding. Therefore, I use the anatomy and motion of the head–body interface in these fishes to develop a mechanical framework for studying postcranial functions during feeding. In fish the head and body are linked by the vertebral column, the pectoral girdle, and the body muscles that actuate these skeletal systems. The morphology of the joints and muscles of the cranio-vertebral and hyo-pectoral interfaces may determine the mobility of the head relative to the body, and ultimately the role of these interfaces during feeding. The postcranial interfaces can function as anchors during feeding: the body muscles and joints minimize motion between the head and body to stabilize the head or transmit forces from the body. Alternatively, the postcranial interfaces can be motors: body muscles actuate motion between the head and body to generate power for feeding motions. The motor function is likely important for many suction-feeding fishes, while the anchor function may be key for bite- or ram-feeding fishes. This framework can be used to examine the role of the postcranial interface in other vertebrate groups, and how that role changes (or not) with morphology and feeding behaviors. Such studies can expand our understanding of muscle function, as well as the evolution of vertebrate feeding behaviors across major transitions such as the invasion of land and the emergence of jaws. 
    more » « less